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Using the semiLagrangian approach of John (1953), both Longuet-Higgins (1982) 
and New (1983) have proposed simple analytical models of the underside or loop of 
a plunging breaking wave. Although New’s ellipse model appears to be remarkably 
accurate both in profile and free-surface particle dynamics for a limited region of  the 
loop, both of the loop models are shown to be deficient because neither correctly 
accounts for the rest’of the wave. On the other hand, Longuet-Higgins (1983) gives 
a semiLagrangian representation of the Dirichlet hyperbola, previously shown to be 
relevant to the jet of fluid ejected from the top of a breaking wave (see Longuet-Higgins 
1980). We show that both this jet flow and the ellipse model of New describing the 
loop are, for large time, complementary solutions of the same free surface equation. 
This in turn suggests solutions which combine both the jet and the loop, to give a 
much more complete model of the entire overturning region not too far from the wave 
crest, and which has approximately correct free-surface particle velocities and 
accelerations. 

1. Introduction 
The purpose of this paper is to explore further some simple analytical free-surface 

flows valid in the absence of gravity which may be related to the plunging of a 
breaking wave. Using the semiLagrangian approach of John (1953) described in $2, 
Longuet-Higgins (1982) presents a simple cubic model of the underside, or loop, of 
a plunging breaker, while Longuet-Higgins (1983) gives a semiLagrangian represen- 
tation of the jet (a Dirichlet hyperbola) which is ejected from the crest of a breaking 
wave. New (1983) also presents a model of the loop (the d3-ellipse) in which the free 
surface fluid particles have a realistic rotation around the loop. The aim of this paper 
is to build upon these solutions to produce a combined jet and loop flow in which 
there are no non-annulled singularities within the fluid, and for which the fluid 
velocities and accelerations are qualitatively correct. 

Section 3 discusses these previously known solutions with a view to seeing if their 
shortcomings might be overcome by some sort of modification or extension. For 
example, Longuet-Higgins (1982) shows that the cubic solution has another surface 
of vanishing pressure which approximately accommodates the rear of the wave and 
can be used to justify the accuracy of the model’s fit with the loop of the wave. Does 
New’s ellipse, with its superior modelling of the particle dynamics within the loop, 
also have such an approximation to the rear of the wave? Section 3 shows that it 
does not. However, the main conclusion relevant to the rest of the paper is as follows: 
if the rear of the wave is to be modelled by another zero-pressure surface, then in 
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order for this surface to connect up with the loop region the pressure gradient at the 
point of connection must vanish. This implies that the particle acceleration must 
vanish here (=  g in a fixed frame), which is not observed in numerical calculations 
of breaking waves until the jet is very well formed. This conclusion was also drawn 
by Longuet-Higgins (1982)’ but its implication, that a model of the loop part of the 
wave must accommodate the jet of the wave a priori (and not rely on other p = 0 
surfaces), is exploited in the present paper. 

Section 4 discusses the semiLagrangian representation of the Dirichlet hyperbola 
(see Longuet-Higgins 1983), which is strictly valid only within the jet region. 
Nevertheless it is shown that both the Dirichlet hyperbola and the ellipse of New are 
both solutions of John’s free surface equation : 

ztt = lrzw, (1 .1)  

with the r-functions for both models having the same behaviour for large time. Since 
the former is a jet flow while the latter describes a loop, it may be possible to combine 
both flows to describe a large part of the breaking wave’s overturning region, 
provided that singularities within the fluid are annulled. Conversely (1  .l) may be used 
to generate combined loop and jet flows which do not rely on other p = 0 surfaces 
to model the rear of the wave and consequently avoid the difficulty arising in previous 
loop models. This is the approach of the present paper, and in preparation for this 
some necessary asymptotic solutions and relations are given in $5.  Section 6 gives 
possible solutions to the combined loop and jet flow with qualitatively correct 
velocities and accelerations, and suitably annulled singularities, at least in the large 
time limit. When compared with numerically generated breaking waves, the agreement 
is about as good as can be expected since the proposed analytic model only includes 
gravity in a non-essential way. Finally, $7 is a comparison of the r-function used to 
generate the solution, with the computational r-function of the numerically generated 
breaking waves. This gives support to the applicability of the semiLagrangian 
technique and the present solution, although some shortcomings of the model 
r-function are also illuminated. 

2. John’s formalism 
For a free-surface flow we suppose that on the free surface the particles are labelled 

by a real parameter w which is constant following a particle, and is thus termed a 
semiLagrangian description by Longuet-Higgins (1982). Assuming gravity to act in 
the positive z-direction, John (1953) then writes the free-surface equation as : 

(2.1) 

In case of a gravity-free flow (or if we take axes moving with downward acceler- 

(2.2) 

ztt - g  = ir(w, t )  z,, 

where r (w ,  t )  is a real function of w and t .  

ation g )  we have 

ztt = ir(w, t )  z,, 

which has solution z1 say. Hence a solution to (2.1) can be formed from z1 by the 
addition of bt, and is said to include gravity in a non-essential way. 

A great advantage of using the semiLagrangian description is that the free surface 
is characterized by a linear equation. Hence any two solutions satisfying (2.1) or (2.2) 
with the same function r(w,  t )  may be added together to give a third solution of the 
equation : we call them complementary solutions. 
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On the free surface we must have the pressure and its material derivative 

p = 0, (2.3) 

vanishing : 

DP - = o ,  
Dt 

When w is real (2.3) and (2.4) are automatically satisfied. There may be, however, 
other surfaces in the w-plane satisfying (2.3) and (2.4) given by the roots of 

- 2p = (x t  +xt*) + z t (w* )  zt*(w) -g(z+ z*) 

-2j'- [ z ~ ( w )  $ ( w )  + z ~ ( w * )  z~(o*)] = 0, (2.5) 

as in Longuet-Higgins (1982), where f is an arbitrary function of time, 

is the velocity potential, and 

Lastly, within the fluid domain we require that x has no singularities that  are not 
annulled. Thus if z, = 0 then zzt(w)  must vanish at the same point within the fluid 
domain, in which case the singularity is annulled. 

This paper describes flows that do not contain gravity in an essential way and are 
solutions of (2.2). The reason why such flows may be relevant to the crest region of 
a breaking wave is that numerical solutions indicated that the jet is in free fall, whilst 
for the loop the free-surface particle accelerations can be 2 or 3 g. Consequently, for 
a well-overturned wave it may be approximately correct to ignore gravity over a 
region not too far from the wave crest. 

3. Discussion of the loop models of Longuet-Higgins and New 
In  this section we ask whether the solutions of Longuet-Higgins (1982) and New 

(1983), which are proposed models for the underside or loop of a plunging breaker, 
can be extended or modified to include the rest of the wave. Longuet-Higgins proposes 
a simple self-similar cubic solution which fits the loop remarkably accurately and 
partially justifies the accuracy of the fit by showing that the rear of the wave is 
approximately accounted for by another surface of vanishing pressure. New objects 
that the free-surface particles of the cubic do not have the systematic rotation up 
into the jet observed in breaking waves. (We also note that the surface particle 
accelerations of the cubic are directed into the fluid implying that the proposed fluid 
domain has negative pressure. Other cubic solutions given in Longuet-Higgins (1976) 
do not have this defect, but still do not have the correct rotation.) New's ellipse model 
incorporates this rotation and also has surface-particle accelerations directed out 
of the fluid as required: thus as a model for the loop region the ellipse appears 
to be very good for both profiles and velocities of the free-surface. It is natural to 
ask if this accuracy is justified by other p = 0 surfaces as in the cubic model of 
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FIGURE 1. (a) p = 0 surfaces in the w-plane for the ellipse solution of New. One surface lies close 
to the ellipse solution given by w real, and gives some support to New's arguments. t = 1. The 
surfaces are periodically repeated under Re (u)-tRe (w)+Znn, n integer. ( b )  p = 0 surfaces in the 
physical z-plane. The dotted line shows the numerical results of Vinje & Brevig. 
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Longuet-Higgins, which account for the rear of the wave. Figure 1 shows the other 
p = 0 surfaces (generated by putting New’s solution into (2.5) and solving numerically) 
do not pass near the rear of the wave and consequently provide no justification for 
the ellipse’s accuracy. (One p = 0 surface runs close to the elliptic free surface and 
gives some support to the arguments presented by New (1983)). Also the reason why 
the eccentricity of the ellipse is close to d3 remains obscure. 

Let us suppose that the respective difficulties of either of the loop models were 
resolved by a new loop model having correct profile and particle dynamics within 
the loop and another p = 0 surface to model the rear of the wave. (For this surface 
to be a true free surface we also require DplDt = 0 on p = 0, which is very difficult 
to satisfy in general.) For this surface to connect with the loop free surface the 
pressure gradient, and hence the particle acceleration, would have to vanish at the 
point of connection (acceleration = g in the fixed frame). This does not appear to have 
been observed in the numerical studies of breaking waves (except when the jet is very 
well developed). Hence such loop models are at best only partially relevant to 
breaking waves, a fact also pointed out by Longuet-Higgins (1982). The implication 
of this, that models of the loop must also take account of the jet region if they are 
to incorporate the rear of the wave properly, is not accommodated in the existing 
loop models but will be exploited in the present paper. Consequently we need to 
consider the region of sharp curvature around the jet described in the next section. 

4. SemiLagrangian representation of the rotating hyperbolic flow 

hyperbolic flow, representing the jet of a plunging breaker, as 
In the Eulerian representation Longuet-Higgins (1980) gives the form of a rotating 

x = i A 9 ,  (4 .1)  

where A = a(t) eiu(t) is a complex function of time. 

flow may be represented by 
Longuet-Higgins (1982) shows that in the semiLagrangian description the same 

z = F(t)  cosh w + G(t)  sinh w ,  (4.2) 

where F(t )  and G(t)  are chosen so as to annul the singularity arising a t  the focus of 
the hyperbola, thereby allowing the fluid to exist inside the jet. 

For points on the surface of the hyperbola we have the result: 

z = (Ey [dl) cosh w + wi d2) sinh w ] ,  (4 .3)  

where z(l) and d2) are functions of time corresponding to F(t)  and G(t )  in (4 .2) ,  S is 
an arbitrary constant and w = P/A4 is the quotient of two arbitrary constants of 
integration arising in Longuet-Higgins (1980). Now 

(4.4) 

l i l  1 
z(2) +... . 

2t 6t2 6t3 lot4 (4.5) 
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Further Longuet-Higgins (1983) gives the r-function of ( 1 . 1 )  as 

r = -m+[a(t)l4 

It is interesting to compare (4.6) with the r-function of New's ellipse solution: 

where g,,,(w) is an arbitrary function of w alone, and is shown to be irrelevant to the 
solutions of (1.1) by Longuet-Higgins (1976). Hence in the large-time limit 

1 2 3 4  
t4 t6 ta t'O 

r - - - -  + - - - +... . 

For general m the two series (4.6) and (4.8) coincide for the first two terms only, 
whereas for m+O and two r-functions become identical, as can also be seen directly 
from Longuet-Higgins (1980, equation (6.2)). Consequently in the large-time limit, 
or as m+O, the ellipse solution for the loop region, and the Dirichlet hyperbola 
solution for the jet region, are complementary flows and, by the linearity of ( l . l ) ,  
may be added together to form a much more complete model of the entire overturning 
region. This observation is the principle result of this paper. The difficulty arises from 
the nonlinear condition that the singularity within the jet must still be annulled in 
the combined flow. After discussing the jet solution in terms of the polynomial 
solutions of ( l . l ) ,  we show how it is possible to combine flows in the large-time limit. 

5. Complementary flows to the rotating hyperbolic flow 
We now consider some polynomial solutions of ( 1 . 1 )  with r-functions given by (4.6). 

Since (1.1) is linear, such flows will be complementary to the Dirichlet hyperbola 
solution (4.3) and indeed may be added together to form the Dirichlet hyperbola at 
least in the limit of large time and small w (around the tip of the jet). Because the 
solutions for dl )  and d2) given by (4.4) and (4.5) are expressed as large-time 
expansions, we consider the large-time approximation to the r-function of (4.6) given 
by the first two terms only. Thus 

which is identical with the first two terms of the ellipse solution r-function and so 
can be expected to be valid in the loop region also. This generates two classes of 
polynomial solutions given explicitly by 

Po = t ,  
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all expressions being correct to O ( P ) .  For small w the Dirichlet hyperbola solution 
of (4.3) is simply 

(5.3) 

with the singularity within the jet annulled to O(tP5). Using only the first term of 
(4.6) to generate polynomial solutions gives the same result as (5.3) for the jet, except 
that the singularity is annulled only to O(t-3). By taking more terms in (4.6) to 
generate the polynomial solutions we can approximate the Dirichlet hyperbola 
solution, which has its singularity annulled to arbitrarily high inverse powers of time, 
by adding higher order polynomial solutions to (5.3). For example, with the first three 
terms of (4.6) used to generate new polynomial solutions, we see that (5.3) still has 
its singularity annulled only to O(t-5).  We can, however, annul this singularity to 
O ( P )  by addition of a term in P4: 

(5.4) 

where B = hi. This corresponds to taking the next term in the expansion of cosh w 
in (4.3), and so, by addition of higher-order polynomial solutions, to annul the 
singularity to higher inverse orders of time, we recover the hyperbolic solution (4.3) 
again. In  this paper, however, we confine ourselves to the simpler flows generated 

z = i(P0 + W 2  - (Qo + t Q 2  9 

= '('0 + t p 2 )  - ( Q O  + 4Q2) + B4 p4, 
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t =  1 

FIQURE 2. Surface profile of the breaking wave generated by (6.1). The flow has two singularities, 
marked * where z, = 0, whilst z :~  = 0 is marked by 0. For large time the singularity within the 
jet is annulled whilst the other non-annulled singularity lies outside the fluid within the loop of 
the wave. 

FIQURE 3. Spilling-breaker profiles for t = 1, . . . ,5.  

by the r-function of (5.1) with (5.3) as our model for the jet. The higher-order 
polynomial solutions of (5.2) will be added to this jet flow in $6 in order to model 
the loop and rear of the wave. 

6. Addition of other polynomial solutions to the jet 

and try to model the rest of the wave by adding them to the jet of (5.3). Suppose 
We now consider other polynomial solutions with r = - ~ d ( t - ~  - 2 t P )  given by (5.2), 

where A ,  is a constant. 
This flow has two singularities now, one of which is not annulled but lies in the 
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FIQURE 4. Spilling breaker velocities for t = 2.0 when seen in a frame of reference with 
instantaneous velocity Fef. 

FIQURE 5. Spilling-breaker accelerations seen in the gravity-free frame for t = 2.0. 

loop of the wave outside the fluid, and another in the jet which is annulled since z:t = 0 
when 

Substituting (6.2) into the expression for z, gives 

Evidently this cannot vanish for any non-vanishing A,, and so the singularity is 
not annulled to O(t-5) as with (5 .3) .  Consistent to O(tP4) we may write (6.2) as 

showing that the singularity is, in fact, annulled to O(tP4). The free-surface profiles, 
shown in figure 2, look very suggestive when A,  = ii and the free surface asymptotes 
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FIGURE 6. w-plane of the fifth-order polynomial (6.7). The singularities (2, = 0) are marked *, whilst 
places with zzt = 0 are marked 0. The branch cut is shown dotted and the fluid lies within the 
shaded area. Contours other than the real o-axis which also map to the free surface profile are shown 
also. t = 2.0. 

to two ‘ horizontal ’ lines, the rear face of the wave being higher than the front face. 
We note, however, that the flow is essentially gravity-free, and consequently for large 
times the jet does not intersect the free surface on the front face of the wave, but 
becomes thin and horizontal. Further, for early times t < d2, the r-functions and 
hence the accelerations change sign and the acceleration vectors point inwards to the 
fluid instead of outwards as for large times. Evidently, then any combination of the 
polynomial solutions of (5.1) can only model the wave properly for large time, earlier 
times requiring more terms in the expansion of the r-function (4.6). 

What will be the effect of adding additional polynomial solutions to the expression 
(6.1)7 Qo and Po merely shift the origin and were included only to bring out the 
similarity with the hyperbola solution of (4.3), whilst Q, and PI when chosen so that 
the singularity is still annulled merely shift the surface particles along the free surface 
under the translation w + w + constant. For 

and non-vanishing B,, the annulled singularity requirement implies that B, is pure 
imaginary and A3B, = -+i, thereby annulling the singularity to O(t-3).  A ,  is left 
undetermined. This flow, however, has the jet projected perpendicularly at large times 
from the free-surface asymptotes, and thus does not model a plunging breaker. 
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FIGURE 7.  (a) z-plane of the fifth-order polynomial (6.7) showing the free-surface branch cut (dotted) 
and vanishing of z, and zzt as in figure 6. (a) Close up of the jet region of (a) showing the annulled 
singularity. Although the points where z, = 0 and = 0 are distinct in the w-plane (see figure 6) 
these points are indistinguishable a t  this scale when mapped to the z-plane under (6.7). 

Now consider 

= i(PO +iPZ) - (&O + &?2) + B3 p3' (6.6) 

This flow has the jet singularity annulled to O(tP3) only and hence is not as exact 
as (6.1). Furthermore, since we require the particle velocities to be highest in the jet 
region, it seems necessary to exclude all the P-type polynomial solutions when 
modelling the rest of the wave. 
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FIGURE 8. Comparison of numerical results of Vinje & Brevig (1982, private communication) (solid 
line) with (6.7) (dashed line). The origin ( + )  moves in a parabola under gravity, and the numbers 
indicate time. 

By considering the asymptotic behaviour of the free surface for large w we see that 
the next possible refinement to modelling the rest of the wave is 

= A[i(pO + g p 2 ) - ( & 0  +%?$)I + &3 + &4 + &52 (6.7) 

the singularity within the jet still being annulled to O(t-,) ,  and the coefficient A = aeie 
being included for convenience so that the relative size and orientation of the jet may 
be altered easily. With A = elin, A,  = ii, A,  = -+i and A,  = -0.2 we obtain a fairly 
realistic representation of a ‘ spilling ’ breaker with a small overturning region, from 
when the wave has just overturned until when the jet is well developed (see figure 3). 
Again the jet does not intersect the free surface, since we have neglected gravity, 
but rather tends to 45’. Nevertheless, over a limited duration of time we may be 
entitled to ignore gravity for the reasons given in $2. The velocities of the free-surface 
particles, seen in an appropriate frame of reference, and shown in figure 4 for a 
particular time, look realistic since the jet velocities are higher than the front of the 
wave. On the other hand, the accelerations seen in the gravity-free frame (figure 5 )  
are not entirely correct, since although they are in the correct direction we do not 
have maximum acceleration in the loop of the wave. 

Since z is now given by a fifth order polynomial in w we will have four branch points 
(2, = 0) in the flow. These are shown for a particular time in figures 6 and 7 in the 
w-plane and z-plane respectively. I n  the jet we have an annulled singularity as 
expected, but also in the fluid we have another apparent singularity which is not 
annulled. This singularity, however, is not in the fluid domain as can be seen from 
figures 6 and 7. I n  figure 7 we have drawn a branch cut from the jet singularity, 
the fluid lying on either side of this cut. The line of the branch cut is irrelevant so 
long as it is non-intersecting and completely within the fluid. In  the w-plane (see 
figure 6) we have plotted points which map to this branch cut under the mapping 
of (6.7). The fluid region, shown shaded, lies under this surface and above the real 
w-axis; clearly the other singularity must lie on another Riemann surface and not 
in the fluid, and therefore has no significance for the flow. Also shown in figure 6 are 
the surfaces in the w plane other than Re ( w )  = 0 which map to the same free surface 
under (6.7). The singularity in question lies close to one of these surfaces. Finally, 
we note that within the fluid the velocity gradient W, = Z$t /Z ,  is everywhere finite, 
even a t  the annulled branch point, and so the fluid motion is everywhere continuous. 

We are now in a position to attempt a fit to Vinje & Brevig’s (1982, private 
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communication) 'plunging ' breaker numerical results by choosing the coefficients as 
follows : 

A = 2.5 ,ain, A,  = 0.6i, A, = -0.5i, A,  = -0.3-0.03i. 

A comparison of the numerical and analytic profiles is given in figure 8 showing 
qualitative agreement over a limited time. For the analytic results we have plotted 
t = 1, . . . ,5, with origins moving in a parabola under the influence of gravity. Hence 
the flow contains gravity in a non-essential way, as explained in $2. Thus, whilst the 
tip falls under gravity, it does not arch over in the correct fashion and intersect the 
front of the wave, because in this model the front of the wave also falls under gravity. 
As explained in $2, including gravity in such a non-essential way can only be justified 
for a region close to the overturning crest. Furthermore, away from the crest region, 
the wave is essentially progressive. For steady progressive waves Longuet-Higgins 
(1982) points out that the r-function will be a function ofw - t ,  which therefore cannot 
be factorized as r (w,  t )  = T ( t )  W(w)  as in the present paper. This is further discussed 
in $7 ,  where the progressive nature of the numerical r-function is clearly exhibited. 
Evidently then, the above model is strictly limited to the local region of the loop and 
jet of the wave, but does provide a qualitative model of the overturning process. 

The velocity profiles of the surface particles of this plunging breaker, when seen 
in the accelerated reference frame used above also look realistic (see figure 9) except 
for t = 1, where the velocities on the forward face of the wave are greater than in 
the jet, and on the rear face where the velocities have substantially incorrect 
directions (upwards instead of towards the jet.) We can hardly expect the velocities 
and accelerations to be correct for t = 1 since the theory is only valid for large times 
( t  2 2), when the singularity within the fluid is annulled accurately. In  fact, for t = 2 
the spilling breaker ( A  = ,ain, A,  = Bi, A,  = - &i, A, = -0.2) has z, = 0 when 
z = -2.1334+i0.72885, whilst zf = 0 when z = -2.1319+i0.72795, and for the 
plunging breaker ( A  = 2.5eaiff, A ,  = 0.6i, A,  = -0.5i, A,  = -0.3-0.03i) z,,, = Owhen 
z = -5.3342+i1.8225, whilst z,*t = 0 when z = -5.3327+i1.8207, showing that the 
singularity is annulled very accurately even for moderate times. 

The particles move up the front face of the wave as required. The accelerations, 
however, do not reach a maximum in the node of the wave, but increase monotonically 
with distance away from the jet as expected from the clustering of the particles there 
(2, is small) and (1.1). 

In  New (1983) some very accurate calculations of the free surface with 180 points 
per wavelength reveal a jet which does not curl down as much as the jet in the 
calculations of Vinge & Brevig (1980) but is qualitatively similar to the proposed 
analytic solution with A = 3.5 eain, A,  = 0.7i, A,  = -0.5i and A,  = -0.35. Figure 10 
shows a comparison of the two results with the axis moving in a suitable free-fall 
trajectory. Although the agreement is better than figure 8, we see clearly that any 
improvement in the theory must take account of gravity in a non-trivial fashion, as 
well as the progressive nature of the rest of the wave. 

7. Consideration of the numerical solution of Vinje & Brevig 
From the numerical calculations of Vinje & Brevig (1982, private communication) 

we know the accelerations of the surface particles and their positions as the wave 
breaking progresses. As explained in Longuet-Higgins (1976) we can label the 
free-surface particles arbitrarily ; thus imagining the particles to be labelled by integer 
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FIQURE 9(a ,  b) .  For caption see facing page. 

values of w say, we can calculate z, and consequently the r-function from (2.1). 
Figure 11 shows the r-function as a function of time for various labelled particles as 
they move up through the node of the wave, where the r-function is close to its 
maxima, and into the jet where the r-function falls rapidly. Because of the progressive 
nature of the rest of the wave, which must have r ( w - t ) ,  the labelled particles do not 
enter the breaking region simultaneously, and consequently the fitted curves of 

- 1  
rcC 

[l + [ t - t 0 ( o ) ] 2 ] 2 ’  
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FIGURE 9. Velocities of the surface particles when seen in the appropriate accelerating reference 
frame: (a) t = 1.0; (b )  2.0; (c )  3.0; (d) 4.0. 

(shown dotted in figure 11) must each have a different time origin to(w).  It also appears 
necessary to have the time-scale dependent upon o. However, for any particular 
particle, the time dependence of the r-function would appear to be modelled quite 
well by (7.1) as the particle passes through the loop and into the jet of the wave. The 
same comment applies to particle 22 (see figure l l ) ,  which passes up the near vertical 
face and onto the top of the wave before the jet is ejected, although the agreement 
does not appear to be so good. 

From the numerical solution we may therefore conclude that a local model of the 
crest of a breaking wave generated by the r-function of (7.1) may indeed have a time 
development that is approximately correct. 
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\ \ 4.2 
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FIGURE 10. Comparison of numerical results of New (1983) (solid line) with (6.7) (dashed line). 
The origin ( + )  moves in a parabola under gravity, and numbers indicate time. 

A I 

-r 

Time 
FIQURE 11. Numerically generated r-function compared with that of (7.1). Solid lines are from the 
numerical results of Vinje & Brevig (1982, private communication) ; dashed lines indicated the 
analytic r-function of (7.1). A indicates when the front face of the wave becomes vertical, whilst 
B denotes times when the jet is well formed. 

8. Conclusion 
A weakness of both the cubic-polynomial model of Longuet-Higgins (1982) or the 

43-ellipse of New (1982) is that i t  does not appear possible to  account for the jet or 
the rear of the wave in a proper fashion. Both models include at least one singularity 
within the loop, but it appears necessary to include a singularity within the fluid (in 
the jet) in order to make the free surface curl back to form the rear of the wave. A 
model having this feature is the semilagrangian description of the Dirichlet 
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hyperbola (Longuet-Higgins 1983) which has, for large time, the same r-function as 
the 43-ellipse solution of New (1982). This implies that solutions generated with this 
r-function could be relevant, not only at the jet, but also around the loop of the wave. 
Such a model has been described which gives the forward face, loop, jet and rear of 
the wave in a fairly realistic way, and comparisons with the numerical breaking-wave 
profiles of Vinge & Brevig (1982, private communication) and New (1983) look 
encouraging. 
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